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ABSTRACT 
The signalling process by which nitric oxide (NO) acts in diverse cells is extremely complex and indirect. This process performs 
by generating reactive nitrogen oxide species that chemically modify enzymes, signalling proteins and transcription factors. 
Sometimes, immune interventions use as a strategic target the inducible nitric oxide synthase enzyme (iNOS) function that 
proceeds as a key mediator by inhibiting tissue damage observed in inflammatory diseases. In this way, excessive NO is 
necessary to limit destructive Th1 response and to favor Th2 response (immunomodulatory). In this case, the regulatory role of 
iNOS exceeds its cytotoxic function. Inhibition will exacerbate rather than suppress the disease. The role of NO might be 
different in early or late disease stages. For a given cell, the response to NO will depend on its reactivity state, 
microenvironment and tissue type. Therefore, Th1/Th2 balance influenced by NO has become normal apparent at a diverse 
population of immune cells. The two constitutively expressed isoforms (NOS-I and NOS-II), may also be up-regulated by 
immune response to release substantial amounts of NO. However, the contribution of these sources of NO production to 
immunoregulation in chronic immune responses remains to be shown. Thus, in vivo studies, mainly in humans, are necessary. 
In fact, new studies about mechanisms of action of NO in target molecules and cells are necessary for comprehending its role 
in infection and immunological diseases. 
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THE IMPORTANCE OF OSTEOLOGICAL COLLECTIONS TO THE S TUDY OF BIODIVERSITY 

RESUMO 
O processo de sinalização através dos qual o óxido nítrico (NO) atua em diversas células é extremamente complexo e indireto, 
agindo através da geração de espécie reativa de oxigênio, quimicamente modificando enzimas, sinalização de proteínas e 
fatores de transcrição. Algumas vezes, intervenções imune usam como estratégia-alvo a função da enzima óxido nítrico 
sintase induzível (iNOS), um mediador para inibir os danos provocados no tecido em doenças inflamatórias. Por esta via uma 
quantidade excessiva de NO é necessária para limitar o efeito destrutivo da resposta Th1 e favorecer a resposta Th2 
(imunomoduladora). Neste caso o papel regulador da iNOS excede a função citotóxica, de forma que a inibição da iNOS pode 
exacerbar a supressão da doença. O papel do NO pode ser distinto nos estágios iniciais e tardios das doenças. Para uma 
determinada célula, a resposta do NO pode depender do estado de reatividade, do micro ambiente e tipo de tecido. Portanto o 
balanço entre Th1 e Th2 influenciado por NO tornou-se aparentemente normal em diversas células. As duas isoformas 
expressas constitutivamente (NOS-I e NOS-II) podem também serem reguladas pelas reposta imune para liberar NO. 
Contudo, a contribuição destas fontes de NO para a imunoregulação de resposta imune crônica permanece desconhecida. 
Desta forma, parece ser considerável o papel do NO em estudos in vivo, principalmente em humanos. De fato, são 
necessários novos estudos sobre o mecanismo de ação do NO em moléculas alvos e células para compreender seu papel nas 
infecções e doenças imunológicas. 
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Nitric oxide (NO) is an important mediator 
of homeostatic processes. Host defense and 
changes in its generation or actions contribute 
to pathologic states. Nitric oxide discovery is 

not only important to our understanding of 
biology but it is also a base for development of 
new approaches for management and 
treatment of different diseases. 
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NO formation may have been originated 
as a first-line defense of metazoan cells 
against intracellular pathogens. It can be 
confirmed by the wide occurrence of enzyme 
responsible for NO production in these cells. 
NO-synthase (NOS) responses in several 
species ranging from invertebrates (Limulus 
polyphemus) (1) to insects (2,3), mammals, 
and non-vertebrates mammals (4-6). In 
mammals, NO response raises in response to 
infection by a wide gamma of intracellular 
pathogens such as bacteria, fungi, and 
parasites (6) (e.g. Leishmania spp. and T. 
cruzi). Transcription factors involved in NO 
synthesis in response to different stress 
situations seems to be related to evolutionary 
diversity.  

Three isoforms of NO are described: 
neuronal (nNOS, NOS-I), endothelial (eNOS, 
NOS-III), and inducible (iNOS, NOS-II) (7,8). 
The first and second isoforms are constitutively 
expressed. However, NOS-I and NOS-III can 
be up-regulated to release substantial amounts 
of NO mainly in the central and peripheral 
nervous system and vascular endothelial cells, 
respectively. The inducible nitric oxide 
synthase (iNOS) is produced mainly in 
macrophages, but it also can be induced in a 
large variety of cells stimulated by cytokines 
and polysaccharides. NO biosynthesis is 
performed by one of NO synthases (NOS) in 
an oxidative reaction.  This reaction mediates 
the incorporation of molecular oxygen (O2) into 
the unstable intermediate Nω-hydroxy-L-
arginine, and subsequently into L-citrulline (9). 

Data suggest that NO is involved in 
specific immunity, but its precise role is not yet 
clear. In addition, increasing evidence indicates 
that NO may act in acute and chronic 
inflammation. In fact, the treatment with 
inhibitors of NO syntase (NOS) reduces the 
inflammation in rats with acute inflammation or 
adjuvant arthritis (10-15). Tissue damage may 
be related to NO cytostatic or cytotoxic effects, 
not only for invading microorganisms but also 
for other cells. However, in some situations NO 
may interact with oxygen-derived radicals to 
generate molecules that could enhance its 
cytotoxicity. Reports suggest that inhibitors of 
NO synthesis and NO donors protect against 
some forms of injury, probably due to the dual 
nature of NO: cytotoxic and vasodilator 
(potentially protective) (16, 17).  

NO has a multifaceted role in 
inflammatory reactions, ranging from 
improvement of vasodilatation and edema (by 

modulating sensory nerve endings and 
leukocyte activity) to tissue cytotoxicity (18-21). 
The damage to target cells by NO released 
from activated macrophages or endothelial 
cells has been confirmed in vitro. Necrotic and 
apoptotic pathways of cell death may be 
triggered by a high dose of NO (22-24). 

The induction of apoptosis (programmed 
cell death) is important in regulation of T cell 
maturation in thymus as well as T cell growth in 
periphery. It seems that NO may regulate the 
apoptosis pathway. Researches have shown 
that low concentrations of NO protect cells 
from apoptosis by inactivating CPP32-like 
protease and by increasing Bcl2 protein 
expression (25). High doses of NO induce 
apoptosis in thymocyte as well as in splenic T 
cells (26). Low doses of NO protect thymocyte 
apoptosis induced by anti-CD3. The anti-
apoptotic or pro-apoptotic effects of NO 
probably involve interaction of reactive-oxygen 
intermediates. These effects are also 
dependent on the redox state of cell (24, 27). 

Interestingly, Th1 cells are more 
susceptible to apoptosis than Th2 cells. NO 
may regulates the Th1/Th2 balance by 
promoting or suppressing apoptosis at high/low 
doses (28). The cytoprotective properties of 
low/intermediate levels of NO might limit tissue 
damage during inflammation, independent of 
attenuating Th1 responses (24; 29-31).  

NO down regulates the expression of 
selectins (P and E), vascular cell adhesion 
molecule, and intracellular adhesion molecule-
1 (ICAM-1). These processes result in 
suppression of binding to respective ligands on 
the vessel wall (32,33). Consequently, rolling of 
leukocytes in endothelium is inhibited as well 
as migration of cells from vessels to the 
tissues. Recent studies have suggested that P 
and E-selectin mediate recruitment of Th1 (but 
not Th2) cells into inflamed tissues (34, 35). 
Due to P-selectin expression was found to be 
down regulated in the presence of NO, it is 
clear that NO preferentially down regulates the 
accumulation of Th1 cells at sites of chronic 
inflammation by interfering with the adhesion 
process (36, 37).  

It has been demonstrated that 
concanavalin-A induces iNOS expression in 
macrophages and, consequently, the NO 
production decreases mitochondrial function 
and DNA synthesis in T cells. Thus, cell 
proliferation in certain ‘low responder’ rodents 
is suppressed (38). Recent studies invalidate 
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the concept of an exclusive nonspecific 
cytostatic effect of NO (39). Rather, specific 
impairment of Th1 cell was observed, while the 
Th2 cell function appeared to be unaltered. 
This also agreed with concomitant observation 
of suppressed IL-2 and IFN-γ (40). 

In murine lymphocytes, the target for NO 
action is the IL-2 gene. Exposure to NO 
suppresses IL-2 gene expression at 
transcription level, consequently modulating 
the Th1/Th2 balance by favoring the Th2 
response (40). Exogenous IL-2 can reverse the 
suppressive effect of NO on Th1 cells. In 
humans, NO may limit Th1 cell activity by 
supporting down regulatory IL-4 production. 
Recently, it has been shown that at high 
concentrations, NO inhibits IL-12 synthesis by 
activated macrophages. In this way, expansion 
of Th1 cells is indirectly suppressed (41). At 
low concentrations, NO selectively enhances 
the induction of Th1 cells and it has no effect 
on Th2 cells (30). 

Various functions of human phagocytes 
are modulated by NO. In macrophages, NO 
induces transcription of IL-12 p40 gene but not 
of human IL-12 p35 gene (42). Due to IL-12 
(p40) homodimer is an antagonist of IL-12; this 
might be a further indication for a fewer Th1 
reactivity in the presence of NO (43). Similarly, 
it has been reported that iNOS expression 
contributes to desensitization of macrophages 
observed after exposure to a low concentration 
of lipopolysaccharide. NO inhibits the 
expression of major histocompatibility complex 
class II (MHC-II).  

At low concentrations, NO selectively 
enhances the induction of Th1 cells and has no 
effect on the Th2 cells (40). NO exerts this 
effect in synergy with IL-12 during Th1 cell 
differentiation and has no effect on fully 
committed Th1 cells (30). In addition, CD4+ T 
cells seem to be directly affected by NO.  This 
suggests an additional pathway by which NO 
may modulate the immune response (41). The 
iNOS activity has been found also to regulate 
chemokine production. Therefore, NO might 
serve to limit the extent of potentially 
dangerous local cellular immune responses. 
INOS is also expressed during chronic asthma, 
and it has been suggested that NO supports a 
Th2 partiality of immune reactivity in the lung 
(44, 45) limiting the damage to tissue provoked 
by exacerbated immune response. 

NO may induce expression of Th2 
cytokine IL-4 and IL-5, while Th1 cytokines, 

IFN-γ and IL-2 are suppressed.  Moreover, the 
apoptosis-inducing activity of NO also affects 
Th1 cells. Thus, apoptosis is more common in 
Th1 cells than Th2 cells (40). The proposed 
role of iNOS is in accord with the observation 
that mice with a disrupted iNOS gene exhibit 
enhanced Th1 activity. It is important to note 
that this concept may be also applied to human 
immune system (46)..   

There is now, sufficient evidence for NO 
production via iNOS enzyme activity in human 
tissue during inflammation. Smaller amounts of 
NO might be released in humans, and human 
cells are more resistant to the cytotoxic effects 
of NO. Thus, the cytotoxic action of NO 
towards autologous human immune or tissue 
cells might be less relevant when compared 
with its regulatory effect. In humans, the 
cytotoxic potential of NO is linked to the 
formation of peroxynitrite, which only occurs at 
the sites of simultaneous superoxide formation, 
such as in phagocytes. 

Signaling processes by which NO acts to 
regulate cells are extremely complex. These 
indirect processes occur through generation of 
reactive nitrogen oxide species that chemically 
modify enzymes, signaling proteins and 
transcription factors. Sometimes, immune 
intervention strategies target iNOS as a key 
mediator for tissue damage in inflammatory 
diseases. Approaches of this type take into 
account that NO also serves to limit destructive 
Th1 responses. In those cases where the 
regulatory role of iNOS exceeds its cytotoxic 
function, inhibition of iNOS will exacerbate 
rather than suppress the disease. The role of 
NO might be different in early or late disease 
stages. For a given cell, the response to NO 
will depend on its reactivity state, the 
microenvironment and its tissue type.  

Therefore, differences in Th1/Th2 balance 
promoted by NO will become more apparent at 
immune cell populations rather than at single 
clones level. The two constitutively expressed 
isoforms, NOS-I and NOS-II, may also be 
upregulated to release substantial amounts of 
NO. However, the contribution of these 
sources of NO production to immunoregulation 
in chronic immune responses remains to be 
shown. Thus, considerable gaps about the role 
of NO in vivo, particularly in humans, need to 
be explained. Future directions will focus on 
molecular action mechanisms of NO, its target 
molecules and cells and its role in infection and 
immunological mediated diseases. 
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Figura.1 – Immunoregulation by nitric oxide. Activated cells, among them, Macrophages, produce Nitric oxide (NO) for the induction of 
Nitric oxide synthase enzyme (iNOs). The NO shows some important function: inhibition of molecular adhesion expression (selectins and 
ICAM-1), that reduces the migration of cells from Th-1 profile to infection site. Moreover, NO may directly inhibit these cells promoting a 
reduction in production of cytokines as IFN-) and IL-2. Inflammatory mediator induces apoptosis (cellular death) in Th1 cells. In addition, 

NO may induces the differentiation of immune response for Th2 profile and the synthesis of cytokines as IL-4 and IL-5. 
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